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The General Elliptic Method’ (GEM) for computing time-dependent, two-dimen- 
sional, compressible,. free convection flows at low Mach number is presented. The 
principal feature of the GEM algorithm is the manner in which the average fluid pressure 
and the local fluid density are varied. Sample calculations of incompressible and com- 
pressible free convection flows are presented. 

INTRODUCTION 

It is usual to consider low Mach number free convection flows as incompressible 
with the density variation effects confined to the buoyancy terms in the momentum 
equations. However, for free convection flow for which the density variations are 
large, this assumption, the classical Boussinesq assumption [I], may not provide 
a basis which is sufficiently accurate. This is particularly true when the temperature 
variations are sufficient to require the consideration of variable properties. 

In this paper we wish to show that the Boussinesq assumption need not be 
employed and that the MAC method developed by Harlow and Welch [2] for 
simulating incompressible fluid flow with free surfaces can be’extended to compres- 
sible free convection problems by incorporating thermal and pressure expansion 
effects. Within the accuracy of the finite difference approximations, this approach 
provides a consistent treatment of the problem according to Mihaljan’s 
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definitions. This computational procedure will be called the General Elliptic 
Method (GEM). 

The GEM algorithm utilizes the usual centered difference expressions for the 
pressure gradient, buoyant, viscous, and heat conduction terms with forward 
differences for the time derivatives. For the test calculations, donor cell and 
centered difference expressions for the advective terms have been used. For the 
simulation of inviscid adiabatic flow, these difference approximations substantially 
damp or amplify (respectively) the kinetic energy of a region of interest and there- 
fore for these flows they are particularly poor approximations. Additionally, these 
difference approximations exhibit poor dispersive properties (see Fromm [7]). 
Williams [16], Crowley [17], and Fromm [ 181, to name a few, have made progress 
in developing improved advective schemes. With these results for encouragement, 
it is not unreasonable to believe that the GEM algorithm can be modified to include 
improved advective approximations. However, in the type of free convection 
flows of interest here, the viscous, buoyant, and pressure gradient terms dominate 
the momentum advection terms with the result that the choice which is made for 
approximating these latter terms is not critical. This is confirmed both with 
numerical convergence studies and with physical experiments. In the latter, 
measured velocity and temperature profiles and overall heat transfer rates have 
been found to be in good agreement with the predictions using first order advective 
schemes [3,4]. Recently the GEM algorithm has been extended to include the 
effects of elastic container walls and has been used to successfully predict some of 
the pressure and temperature fluctuations which have been observed in the single- 
phase cryogenic oxygen storage systems of the Apollo spacecraft [5, 191. 

FORMULATION OF THE DIFFERENCE EQUATIONS 

The appropriate differential equations for the subsonic flow of a Newtonian 
fluid subject to the restrictions 

a. Two-dimensional flow 

b. Absence of viscous dissipation and acoustic waves 

c. Kinetic energy contribution to the internal energy is assumed to be zero 

d. Lack of potential forces (e.g., surface tension, solid-fluid attraction) 

e. Fluid properties which are independent of dynamic effects (e.g., the thermal 
conductivity is not dependent upon the temperature gradient) 

f. No radiant energy exhange (this restriction is not formally necessary but 
is involved in order to simplify the methodological presentation) 
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are 

(14 

(lb) 

UC) 

(14 

where for illustrative purposes we employ Stoke’s relation to give 

From the relation 

--Tds=de+$dp=ae ap lp dp + $1 dP + $ dp = f$I dp + $1 dP> 
L 9 

’ (24 
we define two fluid properties 6 and 4 as 

(2b) 

whose product &$ is the speed of sound squared. The mass fluxes X and F through 
the sides of a cell enclosing a nodal point are defined as 

x = puA, ) T = pvA, (3) 

(A, and A, are the constant areas of the cell sides perpendicular to the x and y 

axes, respectively), Equations (la) and (lb) can be written for rectangular grids as 

(da) 

(4b) 

581/10/3-8 
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The energy equation, Eq. (4b), is expressed in terms of the pressure rather than the 
internal energy. Because of assumptions b and c- the absence of acoustic waves 
and kinetic energy-the time rate of change of the pressure has been taken to be 
independent of the spatial coordinates. The replacement of the local pressure by 
the average fluid pressure takes place only in the compression work term for the 
energy equation and not in the momentum equations and therefore the algorithm 
is restricted to flows in which .dynamic compressive or expansive pressure effects 
are negligible (i.e., Mach number and Eckert numbers are small). Since the left 
hand side of Eq. (4b) is taken to be independent of position, this equation will 
force a special relationship between Dij of any cell and the net energy influx Eij 
into that cell [see Eq. (6a)]. Equation (4b) will not locally conserve energy unless 
special procedures are used to time center the speed of sound squared ($0) and B 
except in the case of ideal gases for which 6’ = h and 4 = R/C* , a constant. 

For most pure substances, 6 and $ are nearly constant with respect to the density, 
even near the critical point. As the fluid deviates from the critical point, 0 varies 
more strongly than 4, but both are well-behaved functions of p in both the single- 
phase region and in the two-phase region near the critical point. 

Equations (lc) and (Id) may be expressed as 
- - - 

--A, $ + &C’S, - P&J, 

--A, z + Adat, - /a,>. 

(4c) 

(44 

FINITE DIFFERENCE FORMULATION 

Since the type of difference expressions which are used for the viscous, buoyant, 
and advection terms are not unusual, these expressions are omitted in the following 
text but may be found in complete form in Ref. [8]. 

The difference forms of Eqs. (4a)-(4d) for a uniform two-dimensional rectangular 
grid with a unit depth in the third dimension are 

P,n+l = P,” + (b;j+“i [E;++S + e;j+8Dyj+i] $-, 

p+1 
2+1/21 = xT+l,2j + 4 [ 

CPU - pi+li)n+l + HX1" 

AX 2+1/2j 4 I w 

E+l 23+1/2 = F;+1,2 + AY [ (pii -Ay)“f’ + HY;,,,,] At, (54 
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where 

and 

v= &Ax = A,Ay, 

and the superscripts IZ + 1 and n + 6 indicate an evaluation at the time (n + 1) At 
or (12 + 6) dt(6 < l), respectively. 

Dij and Eij are the net mass rate and energy rate (by conduction and advection) 
to the ij cell, respectively, while HX and HY represent the sum of the body force, 
the viscous forces, and the momentum advection terms in the x and y directions, 
respectively. The body forces may be evaluated at t + At or at t + At/2 although 
the numerical tests indicate that the latter evaluation yields improved stability. 

To use GEM, Eq. (5b) is written as 

where 

Since Dtj, when summed over the entire computational region, is equal to the net 
inflow of mass at the boundaries and since I’, is assumed to be spatially constant, 
Eq. (6a) can be integrated over the fluid region to give 

P, = /c ($jY8 + !$;;undaryj/x 

Combining Eq. (5a) and (6a), 

Equations (7) and (8) are the discrete conservation equations of energy and mass 
which must be solved simultaneously with the momentum equations, Eqs. (5~) 
and (5d). To do this, we difference the momentum equations and combine them to 
eliminate F+l and P+l yielding 

Lf,l = DE + At(PXY;+l - HXY;), (9) 
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where 
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PxY;+’ = 2 (Piplj - 2Pij + Pi+Jn+l 

4 + J-j Cpij-l - 2Pij + Pij+l)%+l, 

HXY = (HXi-l/~~ - HXi+l/zj + HYi+l/z - HYij+l/Jna 

Combining Eqs. (6) and (9) we finally have 

Equation (10) is an elliptic difference equation which can be solved by direct 
inversion, direct Fourier methods [9], or by iteration methods. For ease of handling 
the considered boundary shapes and simplicity of coding the text problems, the 
successive over-relaxation method was chosen for the examples treated herein. 

If we define NIP as the number of iterations of Eq. (10) and NIE as the number 
of times that p, , $, 0, and E are re-evaluated during each time step, the solution 
procedure for GEM is: 

-- 
1. Prescribe initial values of X, Y, P, and p 

2. Compute u and ZJ from X and Fand p 

3. Evaluate T, h, k, II, (40) and 0 with P, and p from the thermodynamic 
tables and transport relations 

4. Evaluate HX, HY, D, and E 

5. Compute p, and p n+l from Eqs. (7) and (8), respectively 

6. 6. Re-evaluate (@), 0, h, and Eat the average of the initial and current 
values of P, and p 

7. Repeat steps 5 and 6 zero, one, or two times. The optimum number must 
be determined from numerical experiments. 

8. Obtain a solution of Eq. (10) and use the resultant values of the cell 
pressures Pij in the momentum balances (5~) and (5d) to obtain new values of 
X and y. 

9. Use these values of mass fluxes in E and repeat 5, 6, 7, and 8 NIE times. 
The optimum number must be determined from numerical experiments. 

10. The latest values of X, y, Pij , and P, may be used to compute a new 
time cycle from Steps 2-9. 

For an ideal gas, Steps 6, 7, and 9 may be omitted since energy is algebraically 
conserved for such a fluid. However, for general fluids, Steps 5-8 must be repeated 
NIE times in order to conserve energy to the degree desired. An example of the 
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importance of this latter consideration for cryogenic oxygen has been presented 
in Ref. [6]. In this example, nonisothermal cryogenic single-phase oxygen which is 
adiabatically restored to the isothermal state may exhibit associated pressure decays 
of hundreds of pounds per square inch. Application of the GEM algorithm to 
this problem gives rise to errors in the predicted pressure decay which is related 
to the time step and the value of NIE used. If NIE is zero and the time step is 
near the maximum allowable value, errors in the predicted adiabatic pressure decay 
may be in excess of 100 %. Fortunately, values of NIE of two or four will hold the 
error in the predicted adiabatic pressure decay to less than 2% and 0.5 %, 
respectively. 

All of the calculations which are reported herein for an ideal gas were made 
using NIE equal to zero. Stability and energy conservation studies for an ideal gas 
have been made with NIE equal to zero, two, four, and eight. A significant improve- 
ment in the stability properties is obtained for NIE greater than or equal to two. 

STABILITY CONSIDERATIONS 

The stability limits of GEM were established by using the positive coefficient 
rule of Barakat [lo] rather than the heuristic approach of Hirt [l l] or the Fourier 
method of von Neumann [12] since the first was found to be the most conservative. 

Substituting for l’ in Eq. (lb) using Eq. (4b), the stability criteria for the donor 
cell differencing of the advection terms gives 

A = max(klpc, , ~/phi . 

The constants C, and CZ are unity for cells in the interior of the region and one 
plus the number of heated cell faces in the x and y directions, respectively, for cells 
with prescribed heat fluxes. The constants C, , C, , and C, are zero, -l/2, and l/2, 
respectively, for incompressible flow. For compressible flow, C, and C, are unity 
and C, was found to be between 0.5/(1 + 4) and 1; the first value applies when the 
advective energy terms in Eq. (10) are evaluated at 6 = l/2 with NIE greater than 
or equal to 2 and the second value applies when 6 and NIE are zero. 

When the advection terms are center differenced, 1 + (bC4 is replaced by 
OS(1 + &Ya and two additional constraints exist: 
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Numerical tests for lo3 < Ra < IO9 substantiated Eq. (11) but suggested that the 
centered difference limit, Eq. (12), was oft,en too restrictive. It was also observed that 
sudden changes in the body force caused by step changes in g required that Eq. (11) 
be re-evaluated after the end of each time step. If Eq. (11) is violated, then that time 
cycle must be repeated until it is satisfied. However, this costly procedure can be 
avoided by constraining dt by 

At < (max(Llx, dy)/2dg)1/2 (13) 

which can be obtained from a similar stability analysis. 

BOUNDARY TREATMENT 

Some discussion is now devoted to the various boundary conditions which are 
required to define all derivatives and quantities normal to the boundary. In order 
to apply Eqs. (5c), (5d), (6b), (7), (8), and (10) to a physical problem, the volume of 
interest is divided into a desired number of control volumes or cells. For 

convenience, it is useful to define a set of fictitious cells adjoining but outside the 
volume of interest. These cells are used to represent supplier or receiver reservoirs 
of mass or energy and may be used to establish the appropriate boundary condi- 
tions: the alternative to using the fictitious exterior set of cells is to set up special 
forms of the equations at the boundaries which include the apropriate boundary 
conditions. For the calculations over a rectangular region of interest, the fictitious 
cell method of treating the boundary conditions is preferred because it is the 
simplest to implement. 

All mass rates normal to the border must be set to zero except where expulsion 
or mass injection are specified. Where mass injection is prescribed, the enthalpy 
and density must be set to some desired value in the fictitious supplier cell. Where 
mass expulsion is specified, the enthalpy and density of the fictitious receiver cell 
is set equal to that of the supplier cell. The enthalpies are used in the energy advec- 
tion terms while the densities are used in the velocity calculations which are normal 
to and on the border. This velocity enters into two viscous terms. Two other viscous 
terms require the prescription of velocities parallel to the boundary in all external 
cells. Where no-slip boundaries are required, the external velocity is set equal and 
opposite to the values in the active adjoining cell. Where free-slip boundary veloc- 
ities are required, the external velocity is set equal to the values in the 
active adjoining cell. These velocities in external cells are computed after all the 
velocities have been computed which reside inside and on the border. The HXi+l/zj 

and HY,j+l/z terms required by the momentum balances on the border may be 
set to any value but for convenience are set to zero. This follows from the fact that 
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since the mass rates at II + 1 and n are prescribed on the border, the momentum 
balances are not required to generate these values at ,the border. For these to 
balance then it is only necessary that the values of ZZXi+l,2i and HYii+lil defined 
on the border which are used in the elliptic Eq. (6) ,be the same as those used in 
the border momentum balances to find the unknown external cell pressure which 
is required by Eq. (6) during the iterative solution. 

Exterior cell temperatures are determined from the specified heat flux or from the 
relation for a left cell face of 

where TWall is the prescribed wall temperature and Z represents the wall node. 

CAVITY FLOWS WITH SMALL DENSITY VARIATIONS 

A two-dimensional region (Fig. 1) is initially filled with a quiescent ideal gas at 
560”R. At time zero the left and right hand vertical surfaces are changed to 570”R 
and 550”R and maintained at these values thereafter. Both top and bottom surfaces 
are insulated. MacGregor [13], Wilkes [14], and deVah1 Davis [15] have previously 
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FIG. 1. Physical grid. 
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FIG. 4. Mathematical grid. 

treated this problem by using the stream-function vorticity formulation to eliminate 
the hydrostatic pressure in conjunction with the Boussinesq assumption of constant 
density, except in the body force term. In addition, MacGregor experimentally 
measured temperature profiles and heat transfer and found good agreement with 
his first order numerical predictions. Figures 2 and 3 give a comparison of the 
values of v/V,, at the mid-height of the cell computed by using GEM and those of 
MacGregor for an early transient phase and the final steady state. Both methods 
appear to converge to the same results as the number of mesh points increases. 
However, the rate of convergence for GEM is higher since the physical grid (Fig. 1) 
is employed rather than the mathematical grid (Fig. 4) which MacGregor used. It 
may also be noted in Fig. 3 that the centered difference approximation for the 
advection of energy and momentum does not provide superior accuracy compared 
to the donor cell differencing. This result may be interpreted to imply that the 
degree of damping or amplification of kinetic energy inherent in the donor cell or 
centered difference methods of momentum advection, respectively, are not impor- 
tant for free convection flow where the pressure, bouyant, and viscous terms are 
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the dominant momentum conservation effects. Finally, the GEM algorithm was 
much more computationally efficient at Rayleigh numbers above lo4 than 
MacGregor’s program. 

THE COMPUTATION OF ONE-DIMENSIONAL FLOW 

WITH A LARGE DENSITY VARIATION 

We define a function Eij to be the local error in the conservation of energy due to 
the compressibility of the fluid 

l ij = %V/(@);;8 - (E/~)G+~ - DTj+l, 

which should be zero. Depending upon the number of iterations used in solving 
the Poisson’s equation for the cell pressure, eii may deviate from zero. The extent 
to which l ii persists over the space and in time depends strongly upon the number 
of iterations used and the compressibility of the fluid. To examine the behavior 
of the GEM algorithm for strongly compressible fluids, three one-dimensional 
numerical problems were studied with a fluid whose properties were those of an 
ideal gas but with To = 40”R. 

1. A heating rate at the left boundary was computed which yielded a time 
rate of change of P, to be zero with no fluid expulsion. The right boundary was set 
at a constant lower temperature than the initial temperature. 

2. The left and right boundary temperatures were impulsively changed to 
constant, but different values, and the expulsion rate was chosen to maintain 
Pa = 0. 

3. No expulsion was permitted and the end temperatures were fixed so that 
P, varies in time. 

All three studies gave similar results and only those of case 1 are presented. 
For problem 1, the fluid moves from the heated to the cooled side subsequent 

to the application of the heating and cooling at the left and ‘right hand edge, 
respectively. Initially, the flow field has a rightward spatially constant mass flow 
rate, and as the time increases the mass flow vanishes leaving a uniform heat flow 
rate through the stationary gas by conduction. 

Figure 5 shows the behavior of the maximum error in the mass flow rate when 
using the GEM algorithm, with NIP equal to 20. If NIP is fixed at 40, about ten 
cycles are required before the error assumes a constant value of 0.4 %. Even for 
NIP = 10, the maximum error diminishes to less than 1 % in about 20 cycles. 
If NIP is equal to 400, the error in the maximum mass rate is less than 0.1% for all 
time. 
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FIG. 5. Maximum error in the mass rate for a compressible fluid in a cavity. 

When the GEM algorithm does not contain the compressible fluid corrector, 
that is, when D$ is replaced by (P,V/@3)G’+8-1 - (E/82j*s-1, the algorithm does not 
show the prominent self-correcting tendency which is displayed in Fig. 5, and it 
was necessary to set NIP = 200 to maintain the maximum value of l ij less than 1 % 
for all times considered. It should be understood that mass is conserved over the 
total volume, irrespective of the error in Eij . Thus, the, mass in the enclosure as 
determined by (a) integrating the expulsion rate in time; (b) integrating the mass 
in the cells; and (c) sum,ming the net expulsion rates of all the cells all differed by 
less than one place in the f&h significant figure with the IBM 7094 computer. 
This result is not unexpected since the GEM algorithm algebraically conserves 
mass. 

CAVITY FLOW WITH A LARGE DENSITY VARIATION 

The GEM algorithm was applied to the two-dimensional cavity flow problem 
previously rested for an incompressible fluid with an ideal gas at 20”R and with the 
hot wall raised to 30”R while the cold wall was maintained at 10”R. The transient 
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velocity profiles are given in Fig. 6 for the time at which the reverse flow in the 
region 0.3 < x/W < 0.55 was a maximum. The asymmetry introduced by the 
variable density is easily observed. During the transient phase the average fluid 
pressure decayed with time because of a greater heat transfer at the cold wall. 
At steady state i), = 0, irrespective of the grid refinement but the left and right 
wall Nusselt numbers only approached each other as the grid was refined enough 
to resolve the asymmetrical boundary layers. Using NIP = 40, eijmaK had decreased 
to 0.14 % after 70 time steps, and with NIP = 400, was less than 0.1% after the 
first time step. Experiments with NIP showed that the method is unstable for any 
dt if NIP = 1, neutrally stable for NIP = 2, and eij behaves as a damped 
oscillation for subsequent time cycles if NIP > 4. 

The enclosure was also permitted to expel mass at the upper right-hand corner 
at rates of 5 and 12.5 times the maximum steady state mass flux in the enclosure 
for the problem of Fig. 3, and some transient velocity profiles are given in Fig. 7. 
The highest expulsion rate eliminated the reverse flow at the mid-cross section at 
all times but the free convection flow across the bottom of the enclosure was 
always present. 

CONCLUSIONS 

For free convection flows where acoustic waves and local variations in compres- 
sion and expansion are not significant, the energy equation can be adequately 
expressed in terms of the average fluid pressure rather than the local pressure. By 
doing so, the time step for the transient computation is not restricted by the acoustic 
wave speed. Furthermore, it is shown that the Boussinesq assumption is not needed 
and in fact that it is computationally simpler and faster compared to some 
incompressible formulations to utilize the primitive variables of P, T, p, x, and P 
to account for pressure and thermal expansion effects, rather than attempting to 
make some simplifying assumptions regarding the density effects. 
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